Chemopreventive Effect of Ardisia crispa Hexane Fraction on the Peri-Initiation Phase of Mouse Skin Tumorigenesis
نویسندگان
چکیده
OBJECTIVE To investigate the chemopreventive effect of the hexane extract of Ardisia crispa during the peri-initiation phase of mouse skin tumorigenesis. MATERIALS AND METHODS This study was conducted for 12 weeks on two-stage 7,12-dimethylbenz(α)-anthracene (DMBA)-induced tumor initiation followed by croton-oil-induced tumor promotion in mice. A. crispa root hexane extract (ACRH) was applied at various doses (30, 100, 300 mg/kg) 7 days prior to and after DMBA treatment. Throughout the study, morphological observations, i.e., tumor incidence, tumor volume and tumor burden were measured for each of the treated groups. At the end of the experiment, the mice were sacrificed and their skin tissues were examined histopathologically. RESULTS The highest dose of ACRH (300 mg/kg) significantly delayed tumor formation (week 9, p < 0.05) and exhibited the lowest tumor volume (0.71 ± 0.00 mm(3), p < 0.05), tumor burden (2.00 ± 0.00, p < 0.05), and tumor incidence (16.67%, p < 0.05) compared to other doses of ACRH. A 100-mg/kg dose produced tumor latency at week 7, tumor volume of 2.44 ± 0.88 mm(3) (p < 0.05), tumor burden of 1.60 ± 0.60 (p < 0.05), and tumor incidence of 50%; 30 mg/kg produced tumor latency at week 8, tumor volume of 2.04 ± 0.45 mm(3) (p < 0.05), tumor burden of 2.17 ± 0.54, tumor incidence of 60% and carcinogen control (tumor latency at week 7; tumor volume, 3.56 mm(3); tumor incidence of 66.67%). CONCLUSION The highest dose of A. crispa hexane extract delayed tumor development, thus showing a chemopreventive effect on mouse skin tumorigenesis.
منابع مشابه
Low dose triterpene-quinone fraction from Ardisia crispa root precludes chemical-induced mouse skin tumor promotion
BACKGROUND Drastic increment of skin cancer incidence has driven natural product-based chemoprevention as a promising approach in anticancer drug development. Apart from its traditional usages against various ailments, Ardisia crispa (Family: Myrsinaceae) specifically its triterpene-quinone fraction (TQF) which was isolated from the root hexane extract (ACRH) was recently reported to exert anti...
متن کاملIsolation of a quinone-rich fraction from Ardisia crispa roots and its attenuating effects on murine skin tumorigenesis.
Ardisia crispa (Family: Myrsinaceae) is an evergreen, fruiting shrub that has been traditionally used as folklore medicine. Despite a scarcity of research publications, we have succeeded in showing suppressive effects on murine skin papillomagenesis. In extension, the present research was aimed at determining the effect of a quinone-rich fraction (QRF) isolated from the same root hexane extract...
متن کاملArdisia crispa roots inhibit cyclooxygenase and suppress angiogenesis
BACKGROUND In our previous studies conducted on Ardisia crispa roots, it was shown that Ardisia crispa root inhibited inflammation-induced angiogenesis in vivo. The present study was conducted to identify whether the anti-angiogenic properties of Ardisia crispa roots was partly due to either cyclooxygenase (COX) or/and lipoxygenase (LOX) activity inhibition in separate in vitro studies. METHO...
متن کاملThe hexane fraction of Ardisia crispa Thunb. A. DC. roots inhibits inflammation-induced angiogenesis
BACKGROUND Ardisia crispa (Myrsinaceae) is used in traditional Malay medicine to treat various ailments associated with inflammation, including rheumatism. The plant's hexane fraction was previously shown to inhibit several diseases associated with inflammation. As there is a strong correlation between inflammation and angiogenesis, we conducted the present study to investigate the anti-angioge...
متن کاملEFFECT OF IRON OVERLOAD ON 7, 12-DIMETHYLBENZ (A) ANTHRACENE-INDUCED SKIN TUMORIGENESIS
Iron overload is known to occur in the West European and American population due to the consumption of iron-rich diets. On the other hand, genetic disorders leading to iron overload are also known. Iron overload leads to increased peroxidation and disruptive disintegration of lipid-rich membranes, and predisposes humans for an enhanced risk of cancer induction. In experimental animals iron ...
متن کامل